РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИНИСТЕРСТВА ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

13/19/2

Одобрено кафедрой «Локомотивы и локомотивное хозяйство»

ОСНОВЫНАДЕЖНОСТИ ЛОКОМОТИВОВ

Задание на контрольную работу с методическими указаниями для студентов VI курса

специальности 150700 ЛОКОМОТИВЫ (Т)

Составил: канд. техн. наук, доц. БУХТЕЕВ В.Ф. Рецензент: канд. техн. наук, доц. СКАЛИН А.В.

© Российский государственный открытый технический университет путей сообщения Министерства путей сообщения Российской Федерации, 2004

ВВЕДЕНИЕ

Надежность локомотива — свойство сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции при заданных режимах и условиях его использования, технического обслуживания, ремонтов и хранения.

Перед выполнением контрольной работы студент должен ознакомиться с основными терминами и определениями надежности: работоспособное и исправное состояние, отказ и повреждение, внезапный и постепенный отказы, восстанавливаемое и невосстанавливаемое, ремонтируемое и неремонтируемое изделие, предельное состояние, наработка и продолжительность эксплуатации, ресурс, срок службы, безотказность, ремонтопригодность, долговечность, сохраняемость, надежность. Важно усвоить связь между вероятностью и статистической вероятностью события, средним значением и математическим ожиданием случайной величины. Необходимо также иметь представление о повышении надежности изделий путем структурного резервирования, об основном и резервном элементе, о кратности резерва, о дублировании, об общем резервировании и т.д.

Затем студент должен перейти к изучению способов расчета единичных и комплексных показателей надежности. В контрольной работе студент должен рассчитать показатели надежности для невосстанавливаемых объектов, а для восстанавливаемых — применительно к периоду эксплуатации до первого отказа, для трех из многих, используемых на практике показателей надежности: вероятность безотказной работы, среднюю наработку до отказа и интенсивность отказов. Указанные показатели достаточно широко используются для оценки безотказности, как на стадии проектирования и испытания объектов, так и при их эксплуатации. Умение рассчитывать эти показатели поможет студенту освоить расчеты других единичных и комплексных показателей надежности, а также сформировать понимание основных закономерностей изменения исправности и работоспособности локомотивов.

Таблица 1

В контрольную работу включены 5 заданий с методическими указаниями и контрольными вопросами для лучшего усвоения выполненных работ и подготовки к зачету по курсу.

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ

Контрольная работа выполняется на листах писчей бумаги формата A4 или в отдельной тетради. На титульном листе отчета по контрольной работе указывают название университета, факультета, кафедры, название дисциплины, фамилию и инициалы студента, его учебный шифр, курс, адрес, фамилию и инициалы преподавателя, год выполнения работы. Список использованных источников приводится в конце работы в соответствии с ГОСТ.

Выполненную работу студент подписывает с указанием даты и высылает в университет для рецензирования. Все ошибки и неточности, допущенные в работе должны быть устранены на помещенных отдельных листах в соответствующих местах. При этом все замечания рецензента должны быть сохранены.

Контрольные работы, выполненные не по своему варианту и без соблюдения указанных выше требований, не зачитываются.

ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ Задание 1

В табл. 1 приведены значения наработок до отказа в находившейся под контролем партии одинаковых устройств.

Требуется определить статистические вероятности безотказной работы P(t) и Q(t) отказа устройства для заданного значения t (см. табл. 1). Далее необходимо рассчитать значение вероятности безотказной работы $P^*(t)$ по первым 20 значениям наработки до отказа, указанным для соответствующего варианта в табл. 1. Затем для заданной наработки t требуется рассчитать математическое ожидание числа работоспособных устройств $\overline{N}_p(t)$ при общем числе находившихся в эксплуатации устройств (табл. 2). Требуется рассчитать среднюю наработку до отказа \overline{T} рассматриваемого устройства. Первоначально вычис-

Значения на работки устройства до отказа и заданные значения t и T_{0}

Вариант (предпоследняя	Массив значений наработки до отказа Т, 1000 ч	Заданное значение t, 1000 ч	Значение Т ₀ , 1000 ч
цифра шифра)			
0	11, 9, 12, 16, 7, 8, 10, 11, 15, 8, 12, 14,	12,5	4,5
	6, 10, 9, 10, 16, 11, 10, 13, 15, 11, 13,		
	12, 9, 11, 13, 12, 13, 11, 12, 8, 10, 13,		
	16, 8, 10, 7, 12, 14, 5, 16, 13, 13, 9, 6,		
	11, 9, 12, 14		
1	14, 13, 16, 18, 14, 16, 15, 12, 14, 16,	15,5	7,5
	15, 16, 14, 15, 11, 13, 18, 19, 11, 13,		
	10, 15, 17, 8, 19, 16, 16, 19, 9, 14, 12,		
	15, 17, 12, 14, 15, 19, 10, 11, 13, 14,		
2	18, 11, 15, 17, 9, 13, 12, 13, 19	14.5	(5
2	13, 12, 15, 17, 13, 15, 14, 11, 13, 15, 14, 15, 13, 14, 10, 12, 17, 18, 10, 12, 9,	14,5	6,5
	14, 16, 7, 18, 15, 15, 11, 8, 13, 11, 14,		
	16, 11, 13, 14, 18, 9, 10, 12, 13, 17, 10,		
	14, 16, 8, 12, 11, 12, 18		
3	12, 17, 9, 11, 8, 13, 15, 6, 17, 14, 14,	13,5	5,5
3	10, 7, 16, 10, 13, 15, 10, 12, 13, 17, 8,	15,5	5,5
	9, 11, 12, 16, 9, 13, 15, 7, 11, 10, 11,		
	17, 12, 11, 14, 16, 12, 14, 13, 10, 12,		
	14, 13, 14, 12, 13, 9, 11		
4	10, 15, 7, 9, 6, 11, 13, 4, 15, 12, 12, 8,	11,5	3,5
	5, 14, 8, 11, 13, 8, 10, 11, 15, 6, 7, 9,	11,0	5,0
	10, 14, 7, 11, 13, 5, 9, 8, 9, 15, 10, 9,		
	12, 14, 10, 12, 11, 8, 10, 12, 11, 12, 10,		
	11, 7, 9		
5	5, 10, 6, 7, 2, 5, 5, 9, 4, 12, 1, 6, 8, 7, 4,	6,5	0,5
	3, 11, 4, 6, 5, 7, 8, 3, 4, 6, 8, 7, 11, 6, 1,	·	·
	5, 2, 7, 6, 9, 2, 5, 9, 4, 6, 8, 10, 5, 1, 7,		
	9, 3, 8, 1, 4		
6	7, 7, 11, 14, 6, 3, 8, 10, 7, 12, 8, 9, 4, 9,	8,5	2,5
	6, 5, 6, 13, 8, 7, 9, 10, 5, 6, 10, 9, 13, 8,		
	3, 7, 4, 9, 8, 11, 4, 7, 11, 6, 8, 10, 12, 7,		
	3, 9, 11, 5, 10, 3, 6, 8		
7	6, 9, 7, 2, 5, 13, 10, 6, 6, 3, 8, 7, 11, 8,	7,5	1,5
	5, 4, 5, 12, 7, 6, 8, 9, 4, 5, 7, 9, 8, 12, 7,		
	2, 6, 3, 8, 7, 3, 10, 6, 10, 5, 7, 9, 11, 6,		
	2, 8, 10, 4, 9, 2, 5		
8	9, 11, 12, 7, 8, 10, 12, 14, 12, 11, 6, 9,	9,5	3,5
	8, 5, 10, 13, 7, 14, 5, 9, 14, 12, 16, 8,		
	13, 10, 11, 6, 9, 5, 10, 8, 10, 15, 11, 10,		
	8, 15, 7, 8, 11, 9, 12, 10, 5, 16, 8, 13, 9,		
-	6	11.5	4.5
9	11, 12, 14, 12, 10, 8, 7, 12, 11, 9, 4, 11,	11,5	4,5
	11, 12, 13, 15, 6, 10, 9, 12, 5, 8, 12, 7,		
	13, 9, 10, 5, 8, 8, 13, 15, 7, 4, 9, 11, 8,		
	10, 7, 6, 14, 7, 8, 9, 10, 11, 6, 7, 9, 10		

ления произвести непосредственно по выборочным значениям T, указанным в табл. 1, а затем с использованием статистического ряда.

Таблица 2 Объемпартинустройствизаданное значение **К**

Вариант										
(предпоследняя	0	1	2	3	4	5	6	7	8	9
цифра шифра)										
Объем партии	100	1000	300	200	900	700	800	500	600	400
Значение. К	6	2	5	3	6	4	3	5	2	4

Методические указания

Наработка исследуемых устройств до отказа есть непрерывная случайная величина T. По результатам испытания (наблюдение в эксплуатации) партии из N устройств получена дискретная совокупность из N ее значений $t_1, \ldots t_N$ (см. табл. 1).

Статистическая вероятность безотказной работы устройства для наработки t определяется как

$$P(t) = \frac{N_p(t)}{N} , \qquad (1)$$

где $N_{\rm p}(t)$ — число объектов, работоспособных на момент времени t (определяется из табл. 1 для значений T, превышающих t).

При выполнении расчетов следует обратить особое внимание на точность полученных результатов, так как они будут использованы в последующем.

Вероятность отказа устройств за наработку t статистически определяется как

$$Q(t) = \frac{N_{\mu p}(t)}{N} , \qquad (2)$$

где $N_{_{\rm HP}}(t)$ — число объектов неработоспособных к наработке t (определяется из табл. 1 для значений T, меньше t).

Поскольку $N_{\rm p}(t)+N_{\rm np}(t)=N$, то сумма вероятностей: P(t)+Q(t) используется для проверки правильности вычислений.

Оценку вероятности безотказной работы устройства по первым 20-и значениям наработки до отказа обозначим через $P^*(t)$. Ее значение определяется по формуле (1), но при этом N=20, а число работоспособных объектов $N_{\rm p}(t)$ выбирается из этой совокупности.

По условиям опыта, включающего 50 наблюдений, необходимо рассчитать вероятность безотказной работы устройства, т.е. P(t) = 1 - F(t), где F(t) — функция распределения случайной величины «наработка до отказа», определяющая вероятность события T < t при $N \to \infty$.

Тогда с учетом формулы (1) математическое ожидание числа объектов $\overline{N}_p(t)$, работоспособных к наработке t определяется как

$$N_{p}(t) = P(t) N,$$

где N — объем партии устройств, определяемый по табл. 2.

Контрольный вопрос. Чем объясняется возможное различие значений P(t) и $P^*(t)$?

Для вычисления среднего значения \overline{T} случайной величины T непосредственно по ее выборочным $t_1,\ t_2,\ ...,\ t_i,\ ...t_N$ используют формулу

$$T = \frac{1}{N} \sum_{i=1}^{N} t_i \ . \tag{3}$$

Здесь N равно числу значений T (табл. 1) для заданного варианта.

Приведенная формула не несет в себе методической ошибки, но расчеты с ее помощью обычно трудоемки и части приводят к неверным результатам в силу технических ошибок, во избежание которых расчеты желательно выполнить минимум дважды, вводя в калькулятор значения $t_{\rm i}$ первоначально с 1-го значения до N-го, а затем наоборот.

Для упрощения расчетов можно использовать преобразования результатов наблюдений (совокупности значений t_i) в статистический ряд. С этой целью весь диапазон наблюдаемых значений T делят на «m» интервалов или «разрядов» и подсчитывают число значений n_i приходящихся на каждый i-й разряд. Результаты такого подсчета удобно записывать в форме табл. 3.

Таблица 3 Преобразование значений наработки доотка за встатистический ряд

	Интервал		Статистические
№	Нижняя и верхняя границы, 10 ³ ч	Число попаданий на интервал	вероятности
1	$8,5 \div 11,5$	11111 11111 n ₁ =15	$q_1 = 0.15$
2	$11,5 \div 14,5$		$q_2 = 0.35$
		1 1111 n ₂ =35	
3	14,5 ÷ 17,5	11111 TITTI 111111 TITTI -111111	$q_3 = 0.30$
	$17,5 \div 20,5$	n ₃ =30	
4		11111 11111 11111 11111 n ₄ =20	$q_4 = 0.20$

Для выполнения второй части задания примем $\Delta t = 3 \cdot 10^3$ ч, а m=4. Для примера в табл. 3 указаны результаты систематизации в виде статистического ряда 100 значений случайной величины, распределенной на интервале [8,5·10³ ÷ 20,5· 10³ ч], для тех же условий, т.е. $\Delta t = 3 \cdot 10^3$ ч, а m=4.

Заполняя табл. 3, последовательно просматриваем массив значений (t_i) и оцениваем к какому разряду относится каждое число. Принадлежность числа к определенному разряду отмечают чертой в соответствующей строке таблицы. Затем подсчитывают $n_1, \ldots, n_i, \ldots, n_m$ — число попаданий значений случайной величины (число черточек) соответственно в 1-й, ..., i-й, ..., m-й разряд. Правильность подсчетов определяют, используя соотношение

$$\sum_{i=1}^m n_i = N.$$

Нижнюю границу интервала T_0 можно установить, пользуясь табл. 1. Статистический ряд отражают графически (см. рис. 1).

С этой целью по оси абсцисс откладывают разряды и на каждом разряде строят прямоугольник, высота которого равна статической вероятности попадания случайной величины на данный интервал. Здесь T_1, \ldots, T_m соответственно верхние

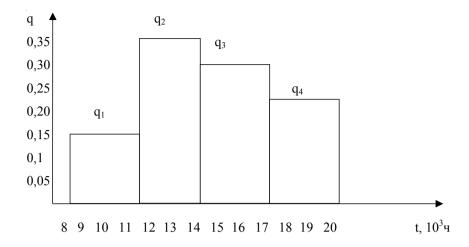


Рис. 1

границы 1, ..., i, ..., m-го интервалов, определяемые принятыми значениями T_0 и Δt .

Статистическая вероятность $q_{_{\mathrm{i}}}$ попадания случайной величины на i-й интервал рассчитывается как

$$q_i = \frac{n_i}{N}.$$

После подсчетов значения $q_{\rm i}$ для всех разрядов проверяют правильность расчетов используя выражение

$$\sum_{i=1}^m q_i = 1.$$

Для расчета среднего значения случайной величины принимают середину $\widetilde{t_i}$ принадлежащей i-му интервалу. В этом случае наработка до отказа определяется

$$\overline{T} = \sum_{i=1}^{m} \widetilde{t} \, q_i \, . \tag{4}$$

Ошибку в расчетах оценивают по формуле

$$\delta = \frac{\overline{T}(II) - \overline{T}(I)}{\overline{T}(I)} \cdot 100\% ,$$

где $\overline{T}(I)$ и $\overline{T}(II)$ — средние значения, вычисленные соответственно с использованием формул (3) и (4).

Контрольный вопрос. Каким образом можно уменьшить ошибки в расчетах с использованием второго метода?

Задание 2

Требуется определить интенсивность отказов $\lambda(t)$ для заданных значений t и Δt .

Необходимо определить также среднюю наработку до отказа $\overline{T}_{\!\scriptscriptstyle B}$ блока сложной технической системы, исходя из предположения, что безотказность некоторого блока характеризуется интенсивностью отказов, численно равной рассчитанной, которая не меняется в течение всего срока службы локомотива.

На рис. 2 изображена подсистема управления, включающая в себя «*K*» последовательно соединенных блоков.

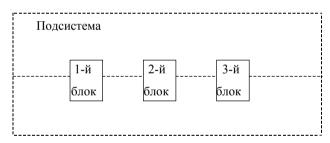


Рис. 2

Блоки имеют одинаковую интенсивность отказов, численно равную рассчитанной. Необходимо определить интенсивность отказов подсистемы $\lambda_{_{\Pi}}$ и среднюю наработку до отказа $\overline{T}_{_{\Pi}}$, построить зависимости вероятности безотказной работы одного блока $P_{_{\rm B}}(t)$ и подсистемы $P_{_{\Pi}}(t)$ от наработки и определить вероятности безотказной работы блока $P_{_{\rm B}}(t)$ и подсистемы $P_{_{\Pi}}(t)$ к наработке $t=\overline{T}_{_{\Pi}}$. Значение «K» берем из табл. 2.

Методические указания

Интенсивность отказов $\lambda(t)$ определяется по формуле

$$\lambda(t) = \frac{q(t, \Delta t)}{P(t)\Delta t},\tag{5}$$

где $q(t, \Delta t)$ — статистическая вероятность отказа устройства на интервале $[t_1t + \Delta t]$ или иначе — статистическая вероятность попадания на указанный интервал случайной величины T;

P(t) — рассчитанная на шаге 1 вероятность безотказной работы устройства (из табл.1, а $\Delta t = 3.10^3$ ч).

Если интенсивность отказов не меняется в течение всего срока службы объекта, т.е. $\lambda(t) = \lambda = \text{const}$, то наработка до отказа распределена по экспоненциальному (показательному) закону. В этом случае вероятность безотказной работы блока

$$P_{\rm g}(t) = e^{-\lambda t} = \exp(-\lambda t) , \qquad (6)$$

а средняя наработка блока до отказа находится как

$$\overline{T}_{E} = \frac{1}{\lambda}.$$
 (7)

При последовательном соединении «K» блоков интенсивность отказов образуемой ими подсистемы

$$\lambda_{\Pi} = \sum_{i=1}^{K} \lambda_{i} . \tag{8}$$

Если интенсивности отказов всех блоков одинаковы, то интенсивность отказов подсистемы

$$\lambda_{\Pi} = \kappa \lambda . \tag{9}$$

а вероятность безотказной работы подсистемы

$$P_{\Pi}(t) = \exp(-\lambda_{\Pi} t) = \exp(-\kappa \lambda t). \tag{10}$$

На основе (7) и (8) средняя наработка подсистемы до отказа находится как

$$\overline{T} = \frac{1}{\lambda_{II}} = \frac{1}{\kappa \lambda} \,, \tag{11}$$

Для построения зависимостей $P_{\rm B}(t)$ и $P_{\rm II}(t)$ используют калькулятор, а для расчета значений $P_{\rm B}(t)$ и ${\rm P}_{\rm II}(t)$ интервал наработки t принимают t=400 ч.

График строят на миллиметровой бумаге, установив максимальное значение t=5200 ч, но при вычислении $P_{\Pi}(t)$ расчеты можно прекратить, достигнув значения 0.05.

Для любого распределения наработки до отказа вероятность безотказной работы подсистемы, состоящей из «K» последовательно соединенных блоков, связана с вероятностями безотказной работы этих блоков следующим соотношением:

$$P_{\Pi}(t) = \prod_{i=1}^{K} P_i(t). \tag{12}$$

При равнонадежных блоках

$$P_{\Pi}(t) = P_{\overline{B}}^*(t). \tag{13}$$

Полученное значение по формуле (13) для $t = \overline{T}_{II}$, сравнивают со значением, рассчитанным по формуле (10).

Контрольный вопрос. В какой период эксплуатации — начальный или по мере приближения к предельному состоянию — интенсивность отказов объектов резко и неуклонно возрастает и почему?

Залание 3

Требуется определить стоимость зарезервированной системы C(x), обладающей надежностью R_0 , которая достигается при использовании «х» систем параллельно.

Известно, что резервируя аппаратуру, можно достичь любой наперед заданной надежности системы. При этом стоимость системы возрастает и может достичь сколь угодно большой величины.

Установить затраты необходимые на увеличение надежности системы от R^* до R_0 заданного сравнительно несложно. Допустим, что исходная система имеет стоимость C^* , тогда

$$(1 - R^*)^{x} = 1 - R_0, \tag{14}$$

или

$$x = \frac{\log(1 - R_0)}{\log(1 - R^*)} , \qquad (15)$$

Поскольку $C(x) = xc^*$, то,

$$\frac{C(x)}{C} = \frac{\log(1 - R_0)}{\log(1 - R^*)} \ . \tag{16}$$

В случае поэлементного резервирования предположим, что все элементы обладают равной надежностью и стоимостью. При этом каждый из «п» элементов исходной системы имеет надежность $(R^*)^{\frac{1}{n}}$. Для достижения заданной надежности R_0 необходимо, чтобы надежность каждой из «п» параллельных групп, содержащих по «X» элементов, составляла $(R)^{\frac{1}{n}}$. «X» численно равно отношению конечной стоимости и начальной, т.е.

$$x = \frac{C_0}{C} = \frac{\log\left(1 - R_0^{\frac{1}{n}}\right)}{\log\left(1 - R_0^{\frac{1}{n}}\right)}.$$
 (17)

Когда элементы различаются по стоимости и надежности, возникает задача отыскания оптимального распределения резервных элементов, при котором максимальная достигается при минимальных затратах

$$\frac{C_0}{C} = \sum_{i=1}^{n} \left(\frac{C_i}{C \log q_i} \right) \log \left(1 - R_0^{\alpha_i} \right), \tag{18}$$

где $\alpha_i = \frac{C_j/\log q_i}{\sum\limits_{i}^{n} C_j/\log q_j}$ — переменная, обеспечивающая равенство

 $R_{\rm i}(x_{\rm i}) = R_{\rm i} = R^{\lambda I}$, а число $q_{\rm i} = 1 - r_{\rm i}$ параллельных элементов i–го типа.

$$x_i = \frac{\log(1 - R^{\alpha_i})}{\log q_i}.$$
 (19)

Поскольку каждый элемент i-го типа имеет стоимость C_{i} , полная стоимость элементов данного типа составит x_i C_i , а всей системы, состоящей из элементов «n» типов

$$C_0 = \sum_{i=1}^{n} C_i x_i \,. \tag{20}$$

Таким образом стоимость системы как функция кратности резервирования вычисляется по уравнению (20), а надежность системы составляет при этом

$$R_0 = \prod_{i=1}^n \left(1 - q_i^{m_i}\right).$$

Методические указания

В табл. 4 приведены исходные данные для расчетов.

Таблица 4

Вариант	Надежность элементов	Стоимость элементов системы, С _і
(предпоследняя цифра учебного	системы, гі	системы, С
шифра)		
0	0,5; 0,6; 0,7; 0,8; 0,9	1, 2, 3, 4, 5
1	0,6; 0,8; 0,8; 0,9; 0,9	2, 4, 6, 8, 10
2	0,8; 0,8; 0,7; 0,6; 0,95	4, 3, 6, 5, 4
3	0,85; 0,75; 0,55; 0,55; 0,8	2, 4, 5, 3, 6
4	0,52; 0,58; 0,62; 0,66; 0,68	1,5; 2,5; 2,0; 2,8; 3,0
5	0,75; 0,82; 0,85; 0,9; 0,95	3, 4, 5, 6, 7
6	0,8; 0,82; 0,84; 0,86; 0,88	4,0; 4,5; 5,0; 5,5; 6,0
7	0,7; 0,7; 0,75; 0,8; 0,85	3,0; 3,0; 3,5; 4,0; 4,5
8	0,79; 0,8; 0,92; 0,95; 0,98	4,0; 4,0; 5,0; 5,2; 6,0
9	0,55; 0,65; 0,75; 0,85; 0,95	1,5; 2,5; 3,5; 4,5; 5,5

Вероятность безотказной работы системы состоящей из взаимнонезависимых систем можно представить в виде

$$R = \prod_{i=1}^{n} R_i, \tag{21}$$

где R_{i} — вероятность безотказной работы i-ой подсистемы.

Исходная система состоит из п элементов, каждый из которых обладает определенной надежностью $r_{:}$ и стоимостью $C_{:}$ (см.

Требуется определить минимальную стоимость системы, при которой ее надежность составит 0,999.

На основании уравнения (21) запишем

$$R = \prod_{i=1}^{n} r_{i} \cdot r_{2} \cdot \dots, r_{n}.$$
 (22)

Степень ненадежности системы определяется как $q_i = 1 - r_i$, затем определяем логарифм полученных чисел. После этого находят,

$$x_{i} = \frac{\log(1 - R^{*}_{i})}{\log q_{i}} = \frac{\log(1 - (1 - Q)_{i}^{*})}{\log q_{i}}.$$
 (23)

Или в связи с тем, что Q << 1 можно записать

$$x \approx \frac{\log \alpha_i Q}{\log q_i} \ . \eqno(24)$$
 Затем определяем стоимость каждого элемента

$$C_{1}^{1} = \frac{C_{1}}{\log q_{1}}$$

$$C_{2}^{1} = \frac{C_{2}}{\log q_{2}}$$

$$C_{3}^{1} = \frac{C_{3}}{\log q_{3}}$$

$$C_{4}^{1} = \frac{C_{4}}{\log q_{4}}$$

$$C_{5}^{1} = \frac{C_{5}}{\log q_{5}}$$

$$(25)$$

и общую стоимость элементов

$$C' = \sum C_i . {26}$$

Теперь определяем значение переменной величины

$$\alpha_i = \frac{C_i'}{C'} \ . \tag{27}$$

Полная стоимость системы

$$C_0 = \sum_{i=1}^{n} x_i C_i$$
; a $\frac{C_0}{\sum C_i} = n$. (28)

Если известны статистические и стоимостные данные о каждом из $\langle n \rangle$ элементов системы, то становится очевидным, что надежность может быть увеличена оптимальным способом от R до 0,999 при $\langle m \rangle$ — кратном повышении стоимости.

Необходимо сравнить этот случай со случаем посистемного резервирования. Если исходное значение надежности R, то Q = 1 - R. Тогда для подсчета необходимого количества параллельных систем определяется по формуле

$$x = \frac{\log Q_0}{\log Q} = \frac{\log(1 - 0.999)}{\log Q} \ . \tag{29}$$

Формула (29) показывает, что при посистемном резервировании можно достичь заданной надежности за счет увеличения стоимости в $\langle m \rangle$ раз.

Если неизвестна стоимость и надежность элементов, но известна стоимость и надежность системы, то, предполагая, что отдельные элементы характеризуются равной стоимостью и равной надежностью, можно определить

$$x = \frac{\log\left(1 - R_0^{\frac{1}{n}}\right)}{\log\left(1 - R^{\frac{1}{n}}\right)}.$$
(30)

Сравнить результаты, полученные по формулам (30) и (28) и сделать выводы.

Задание 4

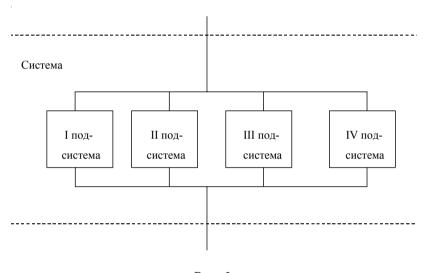


Рис. 3

Расчет ведется в предположении, что отказы каждой из 4-х подсистем независимы, т.е. отказ каждой из подсистем не нарушает работоспособность других и наоборот.

Вероятности безотказной работы каждой подсистемы одинаковы и равны $P_{\Pi}(\overline{T}_{\Pi})$. Тогда вероятность отказа одной системы

$$Q_{\Pi}(\overline{T}_{\Pi}) = 1 - P_{\Pi}(\overline{T}_{\Pi}). \tag{31}$$

Вероятность отказа всей системы $Q_{\rm c}(\overline{T}_{\! \Pi})$ определяется из условия, что отказали все подсистемы, т.е.

$$Q_{\rm c}(\overline{T}_{\!\!\Pi}) = Q_{\Pi}(\overline{T}_{\!\!\Pi}) \, Q_{\Pi}(\overline{T}_{\!\!\Pi}) \, Q_{\Pi}(\overline{T}_{\!\!\Pi}) \, Q_{\Pi}(\overline{T}_{\!\!\Pi}) = Q_{\Pi}^{\ 4}(\overline{T}_{\!\!\Pi}) \ \ (32)$$
 или

Задание 5

Необходимо определить зависимости математического ожидания (среднего значения) износа деталей y(t) и дисперсии D(y(t)) от пробега (наработки) используя данные из табл. 5. Параметры искомых зависимостей следует рассчитать с использованием правила определения прямой, проходящей через две точки с известными координатами.

Методические указания

При выполнении задания исходят из предположения, что математическое ожидание и дисперсия износа деталей представляют собой линейные функции от пробега.

Зависимость износа «у» от пробега t представляет случайную функцию, реализация которой является монотонными убывающими функциями. Для описания случайной функции часто вполне достаточно знать, как меняются ее математическое ожидание и дисперсия $\overline{y}(t)$ и D(y(t)) от пробега. Для описания зависимости износа от пробега могут быть использованы линейные функции

$$\overline{y}(t) = \overline{y}_0 + at , \text{ MM}$$
 (34)

$$D(y(t)) = D(y_0 + bt), \text{ MM}$$
(35)

где \overline{y}_0 — среднее значение износа деталей при t = 0;

 $D(y_0)$ — дисперсия износа деталей при t = 0;

a — средняя скорость увеличения износа мм/тыс.км;

b — скорость увеличения дисперсии износа, мм 2 /тыс.км;

t — пробег локомотива, тыс.км.

Искомыми параметрами функция (34) и (35) являются \overline{y}_0 , а, $D(y_0)$, и b. На практике для их нахождения необходимо область возможных значений пробега (нижняя граница которой t=0, а верхняя находится из условия достижения предельного значения износа) разбить на несколько (10–20) интервалов. При каж-

Таблица 5

Результаты обработки измерений износадеталей локомотивов

гасчетная величина				Бариані	предпослед	Бариант (предпоследняя цифра шифра	пифра)			
	0	1	2	3	4	5	9	L	8	6
					Первое измерение	мерение				
Пробег, t _l , тыс.км	50	25	75	80	40	09	06	90	9	20
Спепний износ \overline{V} мм	0,149	0,081	0,218	0,232	0,123	0,177	0,259	0,094	0,091	0,067
Technical manages, v 1, man	0,00098	0,0005	0,00147	0,00157	0,00079	0,00118	0,00176	900000	0,00128	0,0004
Дисперсия износа D(y ₁), мм										
					Второе измерение	мерение				
Пробег, t2, тыс.км	150	125	175	180	140	160	190	130	165	
Спетний износ \overline{V} мм	0,424	0,430	0,493	0,507	0,397	0,452	0,534	0,369	0,466	0,342
February 2, 2, 2, 2	0,00292	0,00244	0,00341			0,00312		0,0254	0,00322	

дом из разделяемых этими интервалами пробегов $t_1, t_2, ..., t_i$... производят измерение износа большого количества деталей и вычисляют соответствующие пробегам средние значения $\bar{y}_1, \bar{y}_2, ..., \bar{y}_i$..., а затем дисперсия $D(y_1), D(y_2), ..., D(y_i)$,... Используя метод зависимости квадратов, определяем искомые зависимости $\bar{y}(t)$ и D(y(t)) по имеющимся значениям t_i и y_i или t_i и $D(y_i)$.

Учитывая сложность задачи, предполагаем, что массивы данных износа для каждого t_i обработаны. Кроме того, считаем возможным определить искомые линейные зависимости, имея координаты двух точек. При таком существенном упрощении параметры «*a*» и «*b*» из (34) и (35) определяются по уравнениям

$$a = \frac{\bar{y}_2 - \bar{y}_1}{t_2 - t_1},\tag{36}$$

$$b = \frac{D(y_2) - D(y_1)}{t_2 - t_1}.$$
 (37)

Используя координаты любой из двух известных точек, находят два других параметра (например, для второй точки)

$$\overline{y}_0 = \overline{y}_2 - \frac{\overline{y}_2 - \overline{y}_1}{t_2 - t_1} t_2 , \qquad (38)$$

$$D(y_0) = D(y_2) - \frac{D(y_2) - D(y_i)}{t_2 - t_1} t_2 .$$
 (39)

Значения последних четырех уравнений (36–39) подставим в уравнения (34) и (35) и получим выражения, определяющие зависимости среднего износа деталей и дисперсии от пробега

$$\overline{y}(t) = \overline{y}_2 - \frac{\overline{y}_2 - \overline{y}_1}{t_2 - t_1} + \frac{\overline{y}_2 - \overline{y}_1}{t_2 - t_1} t , \qquad (40)$$

$$D(y(t)) = D(y_2) - \frac{D(y_2) - D(y_1)}{t_2 - t_1} + \frac{D(y_2) - D(y_1)}{t_2 - t_1} t.$$
 (41)

По уравнениям (34) и (35) производят необходимые вычисления и записывают их с числовыми значениями параметров.

Контрольный вопрос. Могут ли исходные значения среднего износа деталей \bar{y}_0 и дисперсии износа $D(y_0)$, соответствующие t=0, быть равными 0? Отрицательными числами?

Рекомендуемая литература

Основная

- 1. Вознюк В.Н., Пушкарев И.Ф., Ставров Т.В. и др. Надежность тепловозов. М.: Транспорт, 1991.
- 2. Галкин В.Г., Парамзин В.П., Четвергов В.А. Надежность тягового подвижного состава. Уч. пос. для вузов железнодорожного транспорта. М.:Транспорт, 1981.

Дополнительная

- 3. Бородин А.П., Пахомов В.А. Диагностика тепловозных дизелей по спектральному анализу масла. М.: ВЗИИТ, 1981.
- 4. Пушкарев И.Ф., Пахомов В.А. Контроль и оценка технического состояния тепловозов. М.: Транспорт. 1985.

При составлении задания были использованы методические указания В.М. Тимошечкина

ОСНОВЫНАДЕЖНОСТИЛОКОМОТИВОВ

Задание на контрольную работу

Редактор *Г.В. Тимченко* Компьютерная верстка *Н.Ф. Цыганова*

Тип. зак. Изд. зак. 358 Тираж 500 экз. Подписано в печать 29.06.04 Гарнитура Times. Офсет Усл. печ. л. 1,5 Формат 60×90¹/₁₆

Издательский центр РГОТУПСа, 125993, Москва, Часовая ул., 22/2

Типография РГОТУПСа, 125993, Москва, Часовая ул., 22/2