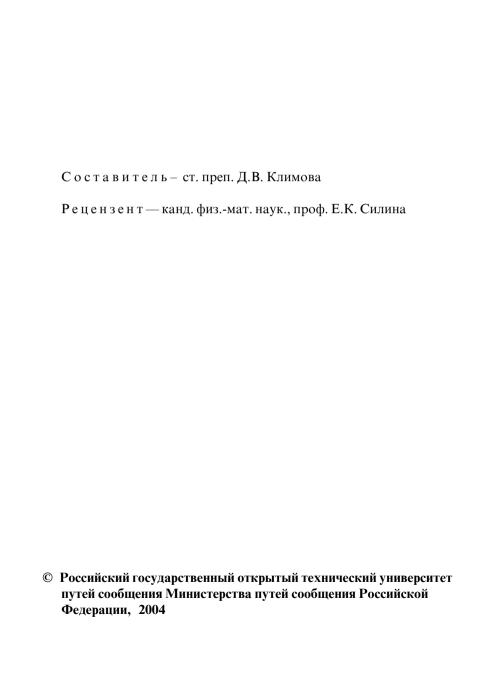
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИНИСТЕРСТВА ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

4/45/2


Одобрено кафедрой «Физика и химия»

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК

Задание на контрольную работу с методическими указаниями для студентов IV курса специальности

330100 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ В ТЕХНОСФЕРЕ (БЖТ)

ПРАВИЛА ОФОРМЛЕНИЯ КОНТРОЛЬНЫХ РАБОТ И РЕШЕНИЯ ЗАДАЧ

- ◆ Номер варианта студент определяет по последней цифре учебного шифра.
- ◆ Задания 2 и 3 выполняют в среде математического пакета MathCAD.
- Условия всех задач переписывают полностью, без сокращений.
- ◆ Все значения величин, заданных в условиях и привлекаемых из справочных таблиц, записывают для наглядности сокращенно (столбиком) в тех единицах, которые заданы и в единицах той системы, в которой выполняют решения (как правило, в системе СИ)
- ◆ Необходимо указать законы, которые должны быть использованы и аргументировать возможность их применения для решения данной задачи.
- ◆ C помощью указанных законов необходимо получить необходимые расчетные формулы.
- ◆ Вывод формул и решение задач следует сопровождать краткими, но исчерпывающими пояснениями.
- Использованные в формулах буквенные обозначения должны быть согласованы с обозначениями, приведенными в условии задачи. Дополнительные буквенные обозначения следует сопровождать соответствующими объяснениями.
- ◆ Каждая последующая задача в контрольной работе должна начинаться с новой страницы.
- ◆ Если контрольная работа не допущена к зачету, то все необходимые дополнения и исправления представляют вместе с незачтенной работой. Исправления в тексте незачтенной работы не допускаются.
- ◆ Допущенные к зачету контрольные работы с внесенными уточнениями предъявляют преподавателю на зачете. Студент должен быть готов дать во время зачета пояснения по решению всех выполненных им задач.

Задание 1

Нарисовать дерево отказов, описывающее сценарий поражения человека электрическим током от используемых в быту электроприборов (табл. 1).

Таблица 1

Вариант	Электроприбор		
0	Утюг		
1	Стиральная машина		
2	Системный блок компьютера		
3	Монитор		
4	Телевизор		
5	Видеомагнитофон		
6	Фен		
7	Музыкальный центр		
8	Пылесос		
9	База радиотелефона		

ПОРЯДОК АНАЛИЗА

Предполагается, что поражение человека электрическим током L является результатом одновременного наложения трех условий: появления электрического потенциала высокого напряжения на металлическом корпусе электроустановки (событие H), нахождение человека на токопроводящем основании, соединенном с землей (событие I) и касание какой-либо частью его тела корпуса электроустановки (событие K).

В свою очередь, событие H будет следствием любого из двух других событий — предпосылок A и B: снижения сопротивления изоляции и касания токоведущими частями электроустановки ее корпуса по какой-либо причине; событие I также обусловлено двумя предпосылками C и D (нахождением человека на токопроводящем полу или его касанием заземленных элементов); событие K — следствием одной из трех предпосылок E, F и G: необходимостью ремонта, технического обслуживания или использования электроустановки по назначению.

Задание 2

Провести анализ результатов расчета риска схода подвижного состава с рельсов вследствие дефекта последних. Соответствующие значения вероятностей, необходимых для проведения анализа взять из табл. 2.

Таблица 2

Варг	иант	Вероят- ность ошибки дефекто- скописта	Вероятность того, что дефект рельсов критический, $P(E_1 I_0)$	Вероят- ность того, что под- вижной состав не- исправен,	Вероят- ность пе- риодичес- кого де- фекта рельсов $P(E_{31} I_0)$	Вероятность наступления резонанса $P(E_{32} I_0)$
				$P(E_2 I_0)$	- (31 20)	
g	0	0,010	0,001	0,002	0,85	0,005
<u>ф</u> р.	1	0,009	0,002	0,003	0,80	0,006
Ì	2	0,008	0,003	0,004	0,75	0,007
ф ф	3	0,007	0,004	0,005	0,70	0,008
ЩИ	4	0,006	0,005	0,006	0,65	0,009
ней	5	0,005	0,006	0,007	0,60	0,005
По последней цифре шифра	6	0,004	0,007	0,008	0,55	0,006
	7	0,003	0,008	0,009	0,50	0,007
loı	8	0,002	0,008	0,010	0,45	0,008
I	9	0,001	0,010	0,011	0,40	0,009

ПОРЯДОК ПРОВЕДЕНИЯ АНАЛИЗА

«Дерево событий», изображенное на рис. 1, соответствует гипотетической последовательности событий для схода подвижного состава с рельсов.

Аварийное состояние, связанное со сходом состава с рельсов, обусловлено следующими промежуточными событиями:

- I_1 : наличием критического дефекта рельсов;
- I_2 неисправностью подвижного состава;
- I_3 : наличием периодического дефекта рельсов и наступлением резонанса.

Исходное событие I_0 связано с ошибкой дефектоскописта (сотрудника, осуществляющего контроль рельсов). В данном случае можно выделить три аварийных пути (события):

Вероятность состояния	$\mathbf{P}_1 = \dots$		$P_2 = \dots$	$P_3 = \dots$	D.			$P_5 = \dots$
Конечное состояние	PC		НС	AC	V	2		AC
Сход с рельсов	Нет		Нет	Да	Па	P.		Да
Резонанс возникает		ļ.	1-P(Ezz lo)	Да Р(Eællo)				
Дефект периодический	Нет	1-P(E31llo)	Да	P(53110)				
Подвижной состав неисправен		Нет	1-P(E2 l0)		Да	P(묘lle)		
Дефект критический			Нет	1-P(E ₁ 0)			Да	P(E ₁ II ₀)
Исходное событие								

Рис. 1. «Дерево событий» для схода подвижного состава с рельсов из-за дефекта рельсов

- E_1 : критический дефект рельсов;
- E_2 : неисправность подвижного состава;
- E_3^2 : периодический дефект рельсов и наступление резонанса. Вероятность первого исхода:

 $P_1 = (1 - P(E_1 | I_0)) \cdot (1 - P(E_2 | I_0)) \cdot (1 - P(E_{31} | I_0)) = \dots$. Система при соответствующей последовательности событий приходит в ... состояние. Последовательность событий при этом является (не является) аварийной.

Вероятность второго исхода:

 $P_2 = (1 - P(E_1 \mid I_0)) \cdot (1 - P(E_2 \mid I_0)) \cdot (1 - P(E_{31} \mid I_0)) \cdot (1 - P(E_{32} \mid I_0)) = \dots$. Система при соответствующей последовательности событий приходит в ... состояние. Последовательность событий при этом является (не является) аварийной.

Вероятность третьего исхода:

 $P_3 = (1 - P(E_1 \mid I_0)) \cdot (1 - P(E_2 \mid I_0)) \cdot (1 - P(E_{31} \mid I_0)) \cdot P(E_{32} \mid I_0) = \dots$. Система при соответствующей последовательности событий приходит в ... состояние. Последовательность событий при этом является (не является) аварийной.

Вероятность четвертого исхода:

 $P_4 = (1 - P(E_1 \mid I_0)) \cdot P(E_2 \mid I_0) = \dots$. Система при соответствующей последовательности событий приходит в ... состояние. Последовательность событий при этом является (не является) аварийной.

Вероятность пятого исхода:

 $P_5 = P(E_1 | I_0) = \dots$. Система при соответствующей последовательности событий приходит в ... состояние. Последовательность событий при этом является (не является) аварийной.

Анализ колонки состояний показывает, что число аварийных последовательностей равно

Поскольку авария наступает при реализации одной из аварийных последовательностей (реализуется в результате суммы событий), то, считая, эти аварийные последовательности попарно невозможными, можно записать

Вер $\{$ аварийного состояния $\}$ = $P(E_1 | I_0) + P(E_2 | I_0) + P(E_3 | I_0)$, где $P(\cdot)$ — вероятность события в скобках.

Соответствующие вероятности $P(E_1|I_0)$ и $P(E_2|I_0)$ заданы. Вероятность $P(E_3|I_0)$ реализации аварийных последовательностей E_3 определяют по формуле вероятности произведения независимых событий: I_{31} — наличие периодического дефекта рельсов и I_{32} — наступление резонанса:

$$P(E_3 | I_0) = P(I_{31} | I_{32}) = P(I_{31})P(I_{32}) = \dots$$

Значит, условная вероятность аварии $Q(I_0) = P(E_1 \mid I_0) + P(E_2 \mid I_0) + P(E_3 \mid I_0) = \dots$

Вероятность аварии $R(I_0)$ при наступлении исходного события I_0 :

$$R(I_0) = P(I_0) \cdot \sum_{i=1}^{n} Q_i(E_i \mid I_0) = \sum_{i=1}^{n} P(I_0) \cdot Q_i(E_i \mid I_0), \quad (2.1)$$

где $P(I_0)$ — вероятность наступления исходного события за некоторый период времени T, например, за один год.

Зная вероятность наступления исходного события $P(I_0)$, по формуле (1) вычисляют риск аварии, связанной со сходом состава с рельсов:

$$R(I_0) = P(I_0) \sum_{i=1}^{3} Q_i(E_i \mid I_0) = P(I_0) (P(E_1 \mid I_0) + P(E_2 \mid I_0) + P(E_3 \mid I_0)) = \dots$$

Анализ результатов расчета риска позволяет выделить наиболее важную (в аспекте безопасности) аварийную последовательность, которая вносит наибольший вклад в величину риска. При сходе подвижного состава с рельсов в данном случае такой аварийной последовательностью является Таким образом, для повышения безопасности эксплуатации целесообразно в первую очередь повысить качество изготовления

Задание 3

Провести интервальную оценку показателей безотказности. Количество наблюдаемых объектов N. Количество зафиксированных отказов L. Доверительная вероятность γ (%).

- 1. Оцените влияние величины доверительной вероятности на интервал гарантированной оценки вероятности безот-казной работы. Для оценки самостоятельно примите несколько значений доверительной вероятности и выполните расчеты.
- 2. Каково влияние числа отказов на размер области гарантированной оценки вероятности безотказной работы? Число отказов самостоятельно изменяйте от одного до величины N.
- 3. Рассмотрите при доверительной различной вероятности частный случай, когда число отказов L=0.

Значения, необходимые для оценки, берут из табл. 3.

Таблица 3

Вариант	Количество	Количество	Доверительная	
	наблюдаемых	зафиксированных	вероятность ү,	
	объектов N , ед.	отказов L , ед.	%	
0	25	7	95	
1	24	2	95	
2	17	4	95	
3	13	3	85	
4	18	7	95	
5	24	3	95	
6	29	5	90	
7	27	3	85	
8	17	5	90	
9	21	8	95	

ПОРЯДОК ОЦЕНКИ

Число степеней свободы, необходимое для вычисления квантилей χ^2 распределения:

$$k_1 = 2L + 2,$$
$$k_2 = 2L.$$

Оценку вероятности безотказной работы проводят по формулам:

$$p = 1 - \frac{L}{N},$$

$$P = p(1 - \gamma)^{\frac{1}{N - L}}.$$

Нижняя интервальная оценка вероятности безотказной работы:

$$P_n = 1 - \frac{\chi_1}{(2N - L) + 0.5\chi_1}$$
.

Верхняя интервальная оценка вероятности безотказной

работы:
$$P_v = 1 - \frac{\chi_2}{(2N - L + 1) + 0.5\chi_2}$$
.

При числе отказавших объектов, равном нулю, вычисление нижней интервальной оценки безотказной работы проводят по формулам:

$$p_0 = 1 - \frac{L}{N},$$

 $P_0 = p_0 (1 - \gamma)^{\frac{1}{N - L}}.$

Результаты записывают по следующей форме:

1. Вероятность безотказной работы анализируемых объектов находится в интервале от ... до Этот результат получен с доверительной вероятностью χ =....

- 2. С изменением доверительной вероятности от до интервальные оценки вероятности безотказной работы меняются следующим образом......
- 3. С изменением числа отказов от ... до ... интервальные оценки изменяются следующим образом ...
- 4. При числе отказов равном нулю верхняя интервальная оценка равна, при этом нижняя интервальная оценка равна При изменении доверительной вероятности эти показатели меняются следующим образом

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК

Задание на контрольную работу с методическими указаниями

Редактор B.И. Чучева Корректор Д.Н. Тихонычев Компьютерная верстка O.A. Денисова

Тип. зак. Изд. зак. 387 Тираж 300 экз. Подписано в печать 21.09.04 Гарнитура Times. Офсет Усл. печ. л. 0,75 Формат $60 \times 90^{1}/_{16}$

Издательский центр РГОТУПСа, 125993, Москва, Часовая ул., 22/2

Типография РГОТУПСа, 125993, Москва, Часовая ул., 22/2